

Contents

	ODIN documentation
	First Steps

	Working with resources

	Extras

	Integration

	Project Links

	Indices and tables

	Getting started
	Creating resources
	Design your resources

	Working with resources

	Annotated resources
	Defining annotated resources

	Working with resources

	Abstract Resources

	Loading and saving data
	JSON data

	Mapping between resources
	Defining a mapping

	Converting between resources

	Polymorphism and abstract resources

	API Reference
	Codecs
	CSV Codec

	Dict Codec

	JSON Codec

	MessagePack Codec

	TOML Codec

	YAML Codec

	XML Codec

	contrib packages
	Generating resource documentation

	Geographic Values

	Currency and Money Values

	Physical Quantities with Pint

	Sphinx Extension

	Exceptions

	Mapping
	Mapping Classes

	Mapping Helpers

	Resources
	Field reference

	Resources Instances

	Annotated Resources

	Resource Meta options

	Adapters

	Validators
	Built in validators

	Traversal
	TraversalPath

	ResourceTraversalIterator

	Utils
	Resources

	Name Manipulation

	Choice Generation

	Iterables

	Integration
	Integration with Amazon Web Services
	Dynamo DB

	SQS

	Integration with Django
	Mapping Django models to resources

	Odin Examples
	Adapter Examples
	Filtering out fields

	Added additional functionality to a resource

	CSV Codec Examples
	Typical Usage

	Handling errors

	Change History
	2.3

	2.2

	2.1
	Annotated Resources

	Breaking changes

	2.0

	1.8.1

	1.8.0

	1.7.3

	1.7.2

	1.7.1

	1.7.0

	1.6.2

	1.6.1

	1.6.0

	1.5.2

	1.5

	1.0b2

	0.10b9

	0.10b

	0.9

	0.9a0

	0.8.2

	0.8.1

	0.8

	0.7

	0.6
	Odin

	Sphinx Integration

ODIN documentation

Object Data Mapper for Python

First Steps

Quick overview to get up to speed with Odin.

	Creating resources

	Annotated resources

	Loading and saving data

	Mapping between resources

Working with resources

Resources are the basic building block of Odin.

	Resources: Field reference | Resource Meta options

	Loading and Saving: JSON Codec | TOML Codec | YAML Codec | CSV Codec | MessagePack Codec

	Mapping: Mapping Classes

	Adapters: Adapters

	Documenting: Sphinx Extension

See the Odin Examples section for examples on how to use features of Odin.

Extras

	Currency and Money Values

	Geographic Values

	Physical Quantities with Pint

Integration

	Integration with Amazon Web Services

	Integration with Django

Project Links

	Project home [https://github.com/python-odin/odin]

	Issue/Bug tracker [https://github.com/python-odin/odin/issues]

	Change History

Indices and tables

	Contents

	Index

	Module Index

	Search Page

Getting started

Quick overview to get up to speed with Odin.

	Creating resources

	Annotated resources

	Loading and saving data

	Mapping between resources

	Polymorphism and abstract resources

Creating resources

Odin was designed to solve several common development problems:

	Loading data from file or data stream and converting into an object graph

	Validating data to ensure it meets the parameters of the program

	Mapping/transforming data into a different format or structure

	Do all of the above in a way that is easy to maintain, read and test

The goal of this document is to give you an overview of how to use the tools provided by Odin to accomplish the goals
set out in the previous paragraph.

Design your resources

The resource syntax offers many rich ways of representing your resources. Here’s a quick example:

import odin

class Author(odin.Resource):
 name = odin.StringField()

class Book(odin.Resource):
 title = odin.StringField()
 author = odin.DictAs(Author)
 genre = odin.StringField(max_length=255)
 num_pages = odin.IntegerField(min_value=1)

From this we can see that a resource is a collection of fields, each field maps to a specific data type and accepts
options that describe validation rules and how data is handled.

The above example also demonstrates relationships between the two resources. This simple example allows for an other
object to be attached to a book. With these simple primitives complex data-structures can be built.

Working with resources

With a resource defined the API can be used to work with resources:

Import the resources we created from our "library" app
>>> from library.resources import Author, Book

Create an instance of an Author
>>> a = Author(name="Iain M. Banks")

Create an instance of a Book
>>> b = Book(title="Consider Phlebas", author=a, genre="Space Opera", num_pages=471)
>>> b
<Book: library.resources.Book resource>

Fields are represented as attributes on the Python object.
>>> b.title
'Consider Phlebas'

DictAs fields are references to other resources.
>>> b.author.name
'Iain M. Banks'

Get all the data as a dict
>>> a.to_dict()
{'name': 'Iain M. Banks'}

Validate that the information entered is valid.
Create an instance of a Book
>>> b = Book(title="Consider Phlebas", genre="Space Opera", num_pages=471)
>>> b.full_clean()
ValidationError: {'author': [{'name': ['This field cannot be null.']}]}

Annotated resources

As of Odin 2.0, resources can now be defined using Python type annotations. This greatly simplifies definition of
resource structures while maintaining compatibility with all existing features. Types defined using the existing
odin.Resource base class can be used in conjunction with new annotation style resources.

Defining annotated resources

The annotated resource syntax offers many rich ways of representing your resources. Here’s a quick example:

import odin

class Author(odin.AnnotatedResource):
 name: str

class Book(odin.AnnotatedResource):
 title: str
 author: Author
 genre: Optional[str] = odin.Options(max_length=255)
 num_pages: int = odin.Options(min_value=1)

Tip

If you prefer the shorthand odin.AResource can be used in place of odin.AnnotatedResource

From this we can see that a resource is a collection of fields, each field maps to a specific data type and accepts
options that describe validation rules and how data is handled.

The above example also demonstrates relationships between the two resources. This simple example allows for another
object to be attached to a book. With these simple primitives complex data-structures can be built.

Working with resources

Just like any other resource the API behaves the same:

Import the resources we created from our "library" app
>>> from library.resources import Author, Book

Create an instance of an Author
>>> a = Author(name="Iain M. Banks")

Create an instance of a Book
>>> b = Book(title="Consider Phlebas", author=a, genre="Space Opera", num_pages=471)
>>> b
<Book: library.resources.Book resource>

Fields are represented as attributes on the Python object.
>>> b.title
'Consider Phlebas'

DictAs fields are references to other resources.
>>> b.author.name
'Iain M. Banks'

Get all the data as a dict
>>> a.to_dict()
{'name': 'Iain M. Banks'}

Validate that the information entered is valid.
Create an instance of a Book
>>> b = Book(title="Consider Phlebas", genre="Space Opera", num_pages=471)
>>> b.full_clean()
ValidationError: {'author': [{'name': ['This field cannot be null.']}]}

Abstract Resources

Abstract resources no longer require the use of a Meta block then are identified through the use of a keyword
argument eg:

import odin

class LibraryBase(odin.AnnotatedResource, abstract=True):
 """
 Common base class for library resources
 """
 name: str

class Library(LibraryBase):
 address: str

The Library resource inherits the _name_ field from LibraryBase but cannot be instantiated directly itself.

Loading and saving data

Saving and loaded of resources is handled by codecs for each format.

JSON data

JSON data is loaded and saved using the odin.codecs.json_codec module. This module exposes an API that is very
similar to Pythons built in json [https://docs.python.org/3/library/json.html#module-json] module.

Using the Book and Author resources presented in the Creating resources section:

Import the resources we created from our "library" app
>>> from library.resources import Author, Book

Create an instance of an Author
>>> a = Author(name="Iain M. Banks")

Create an instance of a Book
>>> b = Book(title="Consider Phlebas", author=a, genre="Space Opera", num_pages=471)

Dump as a JSON encoded string
from odin.codecs import json_codec
>>> json_codec.dumps(b)
'{"genre": "Space Opera", "title": "Consider Phlebas", "num_pages": 471, "$": "library.resources.Book", "author": {
"name": "Iain M. Banks", "$": "library.resources.Author"}}'

Note

Note the $ entries. The $ symbol is used to keep track of an objects type in the serialised state and to aid
deserialization of data.

Similarly data can be deserialized back into an object graph using the odin.codecs.json_codec.loads() method.

Mapping between resources

Defining a mapping

Given the following resources:

import odin

class CalendarEvent(odin.Resource):
 name = odin.StringField()
 start_date: odin.DateTimeField()

class CalendarEventFrom(odin.AnnotatedResource):
 name: str
 event_date: datetime.date
 event_hour: int
 event_minute: int

A mapping can be defined to map from a basic Event to the EventFrom:

class CalendarEventToEventFrom(odin.Mapping):
 from_resource = CalendarEvent
 to_resource = CalendarEventFrom

 # Simple mappings (From Field, Transformation, To Field)
 mappings = (
 odin.define(from_field='start_date', to_field='event_date'),
)

 # Mapping to multiple fields
 @odin.map_field(to_field=('event_hour', 'event_minute'))
 def start_date(self, v):
 # Return a tuple that is mapped to fields defined as to_fields
 return v.hour, v.minute

When a field name is matched on both resources it will be automatically mapped, for other fields mappings need to be
specified along with a transformation method or alternatively a method with a map_field() decorator can be used
to handle more complex mappings.

Hint

Both simple mappings and map_field() can accept multiple fields as input and output, although care must be
taken to ensure that the transformation method accepts and returns the same number of parameters as is defined in
the mapping.

Converting between resources

Once a mapping has been defined the Resource.convert_to() or Mapping.apply() are used to convert
between object, in addition Mapping.update() can be used to update a existing object:

Create and instance of a CalendarEvent
>>> event = CalendarEvent(
 name='Launch Party',
 start_date=datetime.datetime(2014, 01, 11, 22, 30))

Convert to CalendarEventFrom
>>> event_from = event.convert_to(CalendarEventFrom)
>>> event_from
<CalendarEventFrom: example.resources.CalendarEventFrom resource>

>>> event.to_dict()
{'event_date': datetime.datetime(2014, 01, 11, 22, 30),
 'event_hour': 22,
 'event_minute': 30,
 'name': 'Launch Party'}

Or use the mapping definition CalendarEventToEventFrom
>>> event_from = CalendarEventToEventFrom.apply(event)

Or update an an existing resource
event.name = 'Grand Launch Party'
event.update_existing(event_from)

>>> event.to_dict()
{'event_date': datetime.datetime(2014, 01, 11, 22, 30),
 'event_hour': 22,
 'event_minute': 30,
 'name': 'Grand Launch Party'}

Similarly the mapping definition can also be used
>>> CalendarEventToEventFrom(event).update(event_from)

Polymorphism and abstract resources

Just like Python itself through the use of ABCs Odin supports the concept of Polymorphic data structures.

For this example we are going to use animals as an example, first we define a basic base class and provide the
abstract option to indicate this is not an instantiatable object

import odin

class Animal(odin.AnnotatedResource, abstract=True)
 name: str

Next we can defined specific types of animal (very loose types!)

class Dog(Animal):
 pass

class Cat(Animal):
 colour: str

class Bird(Animal):
 flightless: bool
 beak_colour: str

Finally we can define a resource that contains a resource that supports multiple types of Animal:

class Family(odin.AnnotateResource):
 pets: List[Animal]

With this definition we an define a families pets, each of them has a name but also includes other characteristics.

When this data is exported using a codec sub-types of an abstract resource can be specified, eg with JSON:

{
 "$": "Family",
 "pets": [
 {
 "$": "Cat",
 "name": "Gypsy Sun & Rainbows",
 "colour": "Tortoise shell"
 },
 {
 "$": "Bird",
 "name": "Squeek",
 "flightless": false,
 "beak_colour": "Orange"
 }
]
}

Through the use of the type_field (“$” by default) the codecs can resolve the correct type and validate that the
type is supported.

Tip

The type_field value can be changed via the Meta block.

API Reference

	Codecs

	contrib packages

	Exceptions

	Mapping

	Resources

	Adapters

	Validators

	Traversal

	Utils

Codecs

To load and save data from external data files Odin provides a number of codecs to facilitate the process.

Often the API used by the codec mirrors or extends the API provided by the library the Odin extends on. For example for
JSON data Odin provides the same load, loads style interface.

	CSV Codec

	Dict Codec
	Methods

	Example usage

	JSON Codec
	Methods

	Customising Encoding

	Example usage

	MessagePack Codec
	Methods

	Customising Encoding

	Example usage

	TOML Codec
	Methods

	Customising Encoding

	Example usage

	YAML Codec
	Methods

	Customising Encoding

	Example usage

	XML Codec
	Methods

	Unsupported Fields

	Example usage

CSV Codec

Codec for serialising and de-serialising sequences of resources into CSV format.

The CSV CODEC differs from many other CODECS in that data can be streamed, or read
using an iterator.

Dict Codec

Codec for serialising and de-serialising Dictionary and List objects.

Methods

Example usage

Loading a resource from a file:

from odin.codecs import dict_codec

my_dict = {}

resource = dict_codec.load(my_dict, MyResource)

JSON Codec

Codec for serialising and de-serialising JSON data. Supports both array and objects for mapping into resources or
collections of resources.

The JSON codec uses the simplejson module if available and falls back to the json [https://docs.python.org/3/library/json.html#module-json] module
included in the Python standard library.

Methods

Customising Encoding

Serialisation of Odin resources is handled by a customised json.Encoder. Additional data types can be
appended to the odin.codecs.json_codec.JSON_TYPES dictionary.

Example usage

Loading a resource from a file:

from odin.codecs import json_codec

with open('my_resource.json') as f:
 resource = json_codec.load(f)

MessagePack Codec

Codec for serialising and de-serialising data in MessagePack [http://msgpack.org] format. Supports both array and
objects for mapping into resources or collections of resources.

The MessagePack codec uses the msgpack-python module.

Methods

Customising Encoding

Serialisation of Odin resources is handled by a customised msgpack.Packer. Additional data types can be
appended to the odin.codecs.msgpack_codec.TYPE_SERIALIZERS dictionary.

Example usage

Loading a resource from a file:

from odin.codecs import msgpack_codec

with open('my_resource.msgp') as f:
 resource = msgpack_codec.load(f)

TOML Codec

Codec for serialising and de-serialising TOML data. Supports both array and objects for mapping into resources or
collections of resources.

The TOML codec uses the toml module.

Methods

Customising Encoding

Serialisation of Odin resources is handled by a customised toml.Encoder. Additional data types can be
appended to the odin.codecs.toml_codec.TOML_TYPES dictionary.

Example usage

Loading a resource from a file:

from odin.codecs import toml_codec

with open('my_resource.toml') as f:
 resource = toml_codec.load(f)

YAML Codec

Codec for serialising and de-serialising YAML data. Supports both array and objects for mapping into resources or
collections of resources.

The YAML codec uses the yaml module and uses the compiled C versions of the library if available.

Methods

Customising Encoding

Serialisation of Odin resources is handled by a customised yaml.Dumper. Additional data types can be
appended to the odin.codecs.yaml_codec.YAML_TYPES dictionary.

Example usage

Loading a resource from a file:

from odin.codecs import yaml_codec

with open('my_resource.yaml') as f:
 resource = yaml_codec.load(f)

XML Codec

Codec for serialising and de-serialising XML data. Supports both array and objects for mapping into resources or
collections of resources.

Methods

Unsupported Fields

There is no direct representation for a odin.fields.DictField.

Example usage

Loading a resource from a file:

from odin.codecs import xml_codec

with open('my_resource.xml') as f:
 resource = xml_codec.load(f)

Saving a resource to a file:

from odin.codecs import xml_codec

with open('my_resource.xml', 'w') as f:
 xml_codec.dump(f, resource)

contrib packages

Odin provides integration with other Python libraries to simplify common development situations. These packages are kept
separate from the rest of Odin to only require dependencies on other libraries if you so chose to use this additional
functionality.

This code lives in odin/contrib in the Odin distribution.

	Generating resource documentation

	Geographic Values

	Currency and Money Values

	Physical Quantities with Pint

	Sphinx Extension

Generating resource documentation

Note

When using document generation Jinja2 is required.

Odin has built in support for generating documentation of resources that have been registered. This is where the various
verbose_name, doc_text and doc strings are used generate documentation.

Quick example

The default documentation format is reStructuredText, to enable easy integration with
Sphinx [http://www.sphinx-doc.org/en/stable/] for producing project documentation.

A basic example:

from odin import doc_gen
import my_project.resources # Import required resources so they get registered

with file("resources.rst", "w") as fp:
 doc_ren.dump(fp)

The resources.rst file can now be registered into your Sphinx documentation.

Doc-gen API

	The documentation generation API consists of two methods in the vain of the main Odin API:

	
	odin.doc_gen.dump - Output documentation to a file, requires a file pointer.

	odin.doc_gen.dumps - Return the documentation as a string

Both methods take the same optional parameters.

	fmt

	Format of the output, by default this is RESTRUCTURED_TEXT.

There are not currently any other options available.

	exclude

	List of resources to exclude when generating documentation.

	template_path

	Template path to include in template search path, this is used to customise the look of outputted templates.

See Customising output for more information.

Customising output

Geographic Values

Fields and data types that handle latitude and longitude values.

	todo

	This section is in progress

Datatypes

latitude

A latitude value. A latitude is a value between -90.0 and 90.0.

longitude

A longitude value. A longitude is a value between -180.0 and 180.0.

latlng

Combination latitude and longitude value.

point

A point in cartesian space. This type can be either 2D (on a plain) or 3D (includes a z-axis).

Fields

LatitudeField

class LatitudeField([min_value=None, max_value=None, **options])

A latitude.

LatitudeField has two extra arguments:

	LatitudeField.min_value

	The minimum latitude that can be accepted (within the range of a latitude).

	LatitudeField.max_value

	The maximum latitude that can be accepted (within the range of a latitude).

LongitudeField

class LongitudeField([min_value=None, max_value=None, **options])

A longitude.

LongitudeField has two extra arguments:

	LongitudeField.min_value

	The minimum longitude that can be accepted (within the range of a longitude).

	LongitudeField.max_value

	The maximum longitude that can be accepted (within the range of a longitude).

LatLngField

class LatLngField([**options])

A latlng.

PointField

class PointField([**options])

A point.

Currency and Money Values

Fields and data types that handle money values.

	todo

	This section is in progress

Datatypes

Amount

Combines an value and a Currency to represent a monetary amount.

Currency

Defines a currency and maintains metadata about the currency.

Fields

AmountField

class AmountField([allowed_currencies=None, min_value=None, max_value=None, **options])

An amount.

AmountField has three extra arguments:

	AmountField.allowed_currencies

	The currencies that can be accepted by this field, value is enforced Odin’s validation. If None is supplied any
currency is acceptable.

	AmountField.min_value

	The minimum amount that can be accepted.

	AmountField.max_value

	The maximum amount that can be accepted.

Physical Quantities with Pint

Additional resources fields that include a unit.

Note

This contrib module depends on the Pint units library [http://pint.readthedocs.org/] this can be installed with:

pip install pint

Fields

FloatField

class FloatField([max_length=None, **options])

A float.

FloatField has one extra argument:

Sphinx Extension

Odin provides a Sphinx extension for documenting resources. It behaves similarly to the builtin Autodoc tools.

Setup

Add the Odin extension into your Sphinx conf.py:

extensions = [
 ...
 'odin.contrib.sphinx',
 ...
]

Usage

Extension to sphinx.ext.autodoc to support documenting Odin resources.

This extension supports output in two forms, class doc form (for documenting the python objects) and API form for
documenting information about fields for use in an API document.

Usage:

.. autoodin-resource:: namespace.path.to.your.Resource
 :include_virtual:
 :hide_choices:

To select API form use the include_virtual option.

Options

The following options are provided by the documenter:

	include_virtual virtual fields should be included in docs

	include_validators validators should be listed for fields

	hide_choices don’t include the list of valid choices for fields

Exceptions

Exceptions defined by Odin.

Mapping

Resource Mapping API reference. For introductory material, see Mapping between resources.

	Mapping Classes

	Mapping Helpers

Mapping Classes

A mapping is a utility class that defines how data is mapped between objects, these objects are typically
odin.Resource but other Python objects can be supported.

	The basics:

	
	Each mapping is a Python class that subclasses odin.Mapping.

	Each mapping defines a from_obj and a to_obj

	Parameters and decorated methods define rules for mapping between objects.

Defining a Mapping

from_obj and to_obj

These attributes specify the source and destination of the mapping operation and must be defined to for a mapping to be
considered valid.

Note

For an object to be successfully mapped it’s fields need to be known. This is handled by a FieldResolver
instance.

Example:

class AuthorToNewAuthor(odin.Mapping):
 from_obj = Author
 to_obj = NewAuthor

Auto generated mappings

When a field of the same name exists on both the from and to objects an automatic mapping is created. If no data
transformation or data type conversion is needed no further work is required. The mappings will be automatically
created.

You can exclude fields from automatic generation by; including the field in the exclude_fields list() (or
tuple()). Fields are also excluded from automatic generation when they are specified as a target by any other
mapping rule.

Fields that defined relationships (eg DictAs and ArrayOf) are also handled by the auto generated
mapping process, provided that a mapping has been defined previously for the Resource types that these relations refer
to. There is one special case however, this is where Resource types match; in this situation the
odin.mapping.helpers.NoOpMapper is used to transparently copy the items.

Applying transformations to data

Complex data manipulation can be achieved by passing a field value through a mapping function.

The simplest way to apply a transformation action is to use the map_field() decorator.

Example:

class AuthorToNewAuthor(odin.Mapping):
 from_obj = Author
 to_obj = NewAuthor

 @odin.map_field
 def title(self, value):
 return value.title()

In this simple example we are specifying a mapping of the title field that ensures that the title value is title case.

But what about if we want to split a field into multiple outputs or combine multiple values into a single field? Not a
problem, transformation actions can accept and return multiple values. These values just need to specified:

class AuthorToNewAuthor(odin.Mapping):
 from_obj = Author
 to_obj = NewAuthor

 @odin.map_field(from_field='name', to_field=('first_name', 'last_name'))
 def split_author_name(self, value):
 first_name, last_name = value.split(' ', 1)
 return first_name, last_name

Conversely we could combine these fields:

class AuthorToNewAuthor(odin.Mapping):
 from_obj = Author
 to_obj = NewAuthor

 @odin.map_field(from_field=('first_name', 'last_name'))
 def name(self, first_name, last_name):
 return "%s %s" % (first_name, last_name)

While this example is extremely simplistic it does demonstrate the flexibility of mapping rules. Not also that a value
for the to_field is not specified, the mapping decorators will default to using the method name as the to or from
field if it is not specified.

Odin includes several decorators that preform handle different mapping scenarios.

map_field

Decorate a mapping class method to mark it as a mapping rule.

	from_field

	The string name or a tuple of names of the field(s) to map from. The function that is being decorated must accept
the same number of parameters as fields specified.

	to_field

	The string name or tuple of names of the field(s) to map to. The function that is being decorated must return a
tuple with the same number of parameters as fields specified.

map_list_field

Decorate a mapping class method to mark it as a mapping rule. This decorator works in much the same way as the basic
map_field except rather than treating the response as a set of fields it treats it as a list result. This allows you
to map list of objects.

	from_field

	The string name or a tuple of names of the field(s) to map from. The function that is being decorated must accept
the same number of parameters as fields specified.

	to_field

	The string name of tuple of names of the field(s) to map to. The function that is being decorated must return a
tuple with the same number of parameters as fields specified.

assign_field

This is a special decorator that allows you to generate a value that is assigned to the resulting field.

	to_field

	The string name or tuple of names of the field(s) to map to. The function that is being decorated must return a
tuple with the same number of parameters as fields specified.

Low level mapping

The final way to specify a mapping is by generating the actual mapping rules directly. A basic mapping rule is a three
part tuple that contains the name of the from field (or tuple of multiple source fields) a transform action or None if
there is no transform required and finally the name of the two field (or tuple of multiple destination fields).

Note

The number of input parameters and number of parameters returned by the action methods must much the number
defined in the mapping. A odin.exceptions.MappingExecutionError will be raised if an incorrect number of
parameters is specified.

A list of mapping rules:

class AuthorToNewAuthor(odin.Mapping):
 from_obj = Author
 to_obj = NewAuthor

 mappings = (
 ('dob', None, 'date_of_birth'),
)

Tip

Use the define() and assign() methods to simplify the definition of mappings. They provides
many sensible defaults.

While the basic mapping only includes and source, action and destination definitions the mappings structure actually
supports three additional boolean parameters. These are to_list, bind and skip_if_none.

to_list

The two list option is what the map_list_field decorator uses to indicate the the returned object is a list value.

bind

For use with action methods defined outside the mapping class, if bind is set to True the mapping instance is
passed to the action method as the first parameter.

skip_if_none

This flag changes the way that values that are None are handled. If set to True if the from value is None
the value will not be supplied to the destination object allowing the destination objects defaulting process to handle
the value.

Mapping Instances

Mapping instances provide various methods to aid in the mapping process.

Initialisation

The init method accepts a source object and an optional context. The context is a defaults to a dict() and
allows any value to be stored or supplied to the mapping.

When using the apply class method to map a list of objects the context is used to track the index count.

convert

Method that starts the mapping process and returns a populated to_obj.

update

Update an existing object with fields from the provided by the source_obj.

diff

Compare the field values from the source_obj with a supplied destination and return all the fields that differ.

loop_idx

A convenience property gives access to the current loop index when converting a list of objects.

loop_depth

A convenience property that provides the nested loop depth of the current mapping operation.

in_loop

A convenience property that indicates if the current mapping operation is in a loop.

Mapping Factories

When mapping between two objects that are similar eg between a Django model and a resource, or between versions of
resources.

There is also the simpler method when only a forward mapping is desired.

Mapping Other Types

Mappers can also be used to map other to and from other object types that are not odin Resources.

Tip

There is worked example for Django Models in the integration section.

For mapping rules to be determined the mapper must resolve which fields/attributes
are available on a type that can be mapped. This is done using a field resolver
that is associated with the type (or sub type) of the object to be mapped.

The field resolver is a class inherited from FieldResolverBase that can resolve
what fields are available. This class is them registered with Odins type registry.

Mapping Helpers

Odin includes a few helpers to help defining mappings.

Defining Mappings

When defining mappings using the shorthand mappings property these methods simplify the definition of mapping rules.
They also provide sensible defaults.

Action Helpers

Predefined actions for use in mapping definitions.

Special Mappers

Resources

Resource API reference. For introductory material, see Creating Resources.

	Field reference

	Resources Instances

	Annotated Resources

	Resource Meta options

Field reference

This section contains all the details of the resource fields built into Odin.

Field options

The following arguments are available to all field types. All are optional.

verbose_name

Field.verbose_name

A human-readable name for the field. If the verbose name isn’t given, Odin will automatically create it using the
field’s attribute name, converting underscores to spaces.

verbose_name_plural

Field.verbose_name_plural

A human-readable name for the field. If the verbose name isn’t given, Odin will automatically create it using the
field’s attribute name, converting underscores to spaces.

name

Field.name

Name of the field as it appears in the exported document. If the name isn’t given, Odin will use the field’s attribute
name.

null

Field.null

If True Odin will raise a validation error if a value is null. Default is False.

choices

Field.choices

An iterable (e.g., a list or tuple) of 2-tuples to use as choices for this field. If this is given, the choices are used
to validate entries.

Note

Choices are also used by the odin.contrib.doc_gen to generate documentation.

A choices list looks like this:

GENRE_CHOICES = (
 ('sci-fi', 'Science Fiction'),
 ('fantasy', 'Fantasy'),
 ('others', 'Others'),
)

The first element in each tuple is the value that will be used to validate, the second element is used for
documentation. For example:

import Odin

class Book(Odin.Resource):
 GENRE_CHOICES = (
 ('sci-fi', 'Science Fiction'),
 ('fantasy', 'Fantasy'),
 ('others', 'Others'),
)
 title = Odin.StringField()
 genre = Odin.StringField(choices=GENRE_CHOICES)
>>> b = Book(title="Consider Phlebas", genre="sci-fi")
>>> b.genre
'sci-fi'

default

Field.default

The default value for the field. This can be a value or a callable object. If callable it will be called every time a
new object is created.

doc_text (help_text)

Field.doc_text

Doc text is used by the odin.contrib.doc_gen to generate documentation.

Note

help_text will be deprecated in a future release in favor of doc_text.

Also useful for inline documentation even if documentation is not generated.

validators

Field.validators

error_messages

Field.error_messages

is_attribute

Field.is_attribute

use_default_if_not_provided

Field.use_default_if_not_provided

Standard fields

Simple field types.

StringField

class StringField([max_length=None, **options])

A string.

StringField has one extra argument:

	StringField.max_length

	The maximum length (in characters) of the field. The max_length value is enforced Odin’s validation.

IntegerField

class IntegerField([min_value=None, max_value=None, **options])

An integer.

IntegerField has two extra arguments:

	IntegerField.min_value

	The minimum value of the field. The min_value value is enforced Odin’s validation.

	IntegerField.max_value

	The maximum value of the field. The max_value value is enforced Odin’s validation.

FloatField

class FloatField([**options])

A floating-point number represented in Python by a float instance.

FloatField has two extra arguments:

	FloatField.min_value

	The minimum value of the field. The min_value value is enforced Odin’s validation.

	FloatField.max_value

	The maximum value of the field. The max_value value is enforced Odin’s validation.

BooleanField

class BooleanField([**options])

A true/false field.

DateField

class DateField([**options])

A date field or date encoded in ISO-8601 date string [https://en.wikipedia.org/wiki/ISO_8601#Dates]
format.

TimeField

class TimeField([assume_local=True, **options])

A datetime.time [https://docs.python.org/3/library/datetime.html#datetime.time] field or time encoded in
ISO-8601 time string [https://en.wikipedia.org/wiki/ISO_8601#Times] format.

TimeField has an extra argument:

	TimeField.assume_local

	This adjusts the behaviour of how a naive time (time objects with no timezone) or time strings with no timezone
specified. By default assume_local is True, in this state naive time objects are assumed to
be in the current system timezone. Similarly on decoding a time string the output time will be converted
to the current system timezone.

NaiveTimeField

class NaiveTimeField([ignore_timezone=False, **options])

A datetime.time [https://docs.python.org/3/library/datetime.html#datetime.time] field or time encoded in
ISO-8601 time string [https://en.wikipedia.org/wiki/ISO_8601#Times] format. The naive time field differs from
TimeField in the handling of the timezone, a timezone will not be applied if one is not specified.

NaiveTimeField has an extra argument:

	NaiveTimeField.ignore_timezone

	Ignore any timezone information provided to the field during parsing. Will also actively strip out any timezone
information when processing an existing time value.

DateTimeField

class DateTimeField([**options])

A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] field or date encoded in
ISO-8601 datetime string [https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations] format.

DateTimeField has an extra argument:

	DateTimeField.assume_local

	This adjusts the behaviour of how a naive time (date time objects with no timezone) or date time strings with no
timezone specified. By default assume_local is True, in this state naive datetime objects
are assumed to be in the current system timezone. Similarly on decoding a date time string the output
datetime will be converted to the current system timezone.

NaiveDateTimeField

class NaiveDateTimeField([ignore_timezone=False, **options])

A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] field or time encoded in
ISO-8601 datetime string [https://en.wikipedia.org/wiki/ISO_8601#Times] format. The naive date time field differs
from DateTimeField in the handling of the timezone, a timezone will not be applied if one is not
specified.

NaiveDateTimeField has an extra argument:

	NaiveDateTimeField.ignore_timezone

	Ignore any timezone information provided to the field during parsing. Will also actively strip out any timezone
information when processing an existing datetime value.

HttpDateTimeField

class HttpDateTimeField([**options])

A datetime field or date encoded in ISO-1123 or HTTP datetime string format.

UUIDField

class UUIDField([**options])

A UUID field.

This field supports most accepted values for initializing a UUID except bytes_le.

EnumField

class EnumField(enum, [**options])

A enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum] field that will convert to and from an enum and it’s native type.

Ensure that the enum value is compatible with the codec being used.

The enum.IntEnum [https://docs.python.org/3/library/enum.html#enum.IntEnum] variant is also supported.

Changed in version 1.5.0: Choices can be used with EnumField to specify a subset of options. A sequence
of enum values should be used that will be converted to choice tuples by Odin.

PathField

class PathField([**options])

A pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] field that will convert to and from a Path value and a string type.

New in version 2.0.

UrlField

class UrlField([**options])

Based on a string field, validates that the supplied value is a valid URL.

EmailField

class EmailField([**options])

Based on a string field, validates that the supplied value is a valid email address.

IP Fields

class IPv4Field([**options])
class IPv6Field([**options])
class IPv46Field([**options])

Based on a string field, validates that the supplied value is a valid IP address.

Use the IPv46Field to support either a v4 or v6 address.

ArrayField

class ArrayField([**options])

An array structure represented in Python by a list instance.

TypedArrayField

class TypedArrayField(field, [**options])

An array structure represented in Python by a list instance accepts an additional parameter of another field type that
each entry in the array is validated against.

	TypedArrayField.field

	An instance of an odin field that is used to validate each entry in the array.

TypedDictField

class TypedDictField(key_field, value_field, [**options])

A object structure represented in Python by a dict instance accepts additional parameters of both a key and value
field type that each item in the dict is validated against.

	TypedDictField.key_field

	An instance of an odin field that is used to validate each key in the dict; default is StringField.

	TypedDictField.value_field

	An instance of an odin field that is used to validate each value in the dict; default is StringField.

DictField

class DictField([**options])

A dictionary.

Note

The object values in the object are not defined.

Composite fields

Odin also defines a set of fields that allow for composition.

DictAs field

class DictAs(of[, **options])

A child object. Requires a positional argument: the class that represents the child resource.

Note

A default dict is automatically assigned.

ArrayOf field

class ArrayOf(of[, **options])

A child list. Requires a positional argument: the class that represents a list of resources.

Note

A default list is automatically assigned.

DictOf field

class DictOf(of[, **options])

A child dict. Requires a positional argument: the class that represents a dict (or hash map) of resources.

Note

A default dict is automatically assigned.

Virtual fields

Virtual fields are special fields that can be used to calculate a value or provide a value lookup. Unlike using a
property a virtual field is also a treating like field in that it can be mapped or exported.

Note

You can use the

	Virtual fields share many of the options of regular fields:

	
	verbose_name

	verbose_name_plural

	name

	doc_text (help_text)

CalculatedField

class CalculatedField(expr[, **options])

ConstantField

class ConstantField(value[, **options])

A fixed value that remains unchanged.

MultiPartField

class MultiPartField(field_names, separator=""[, **options])

A field that combines strings from other resource fields with a joining value.

Resources Instances

A resource is a collection of fields and associated meta data that is used to validate data within the fields.

	The basics:

	
	Each resource is a Python class that subclasses odin.Resource.

	Each field attribute of the resource is defined by a odin.Field subclass.

Quick example

This example resource defines a Book, which has a title, genre and num_pages:

import odin

class Book(odin.Resource):
 title = odin.StringField()
 genre = odin.StringField()
 num_pages = odin.IntegerField()

title, genre and num_pages are fields. Each field is specified as a class attribute.

The above Book resource would create a JSON object like this:

{
 "$": "resources.Book",
 "title": "Consider Phlebas",
 "genre": "Space Opera",
 "num_pages": 471
}

	Some technical notes:

	
	The $ field is a special field that defines the type of Resource.

	The name of the resource, resources.Book, is automatically derived from some resource metadata but can be
overridden.

Fields

The most important part of a resource – and the only required part of a resource – is the list of fields it defines.
Fields are specified by class attributes. Be careful not to choose field names that conflict with the resources API like
clean.

Example:

class Author(odin.Resource):
 name = odin.StringField()

class Book(odin.Resource):
 title = odin.StringField()
 authors = odin.ArrayOf(Author)
 genre = odin.StringField()
 num_pages = odin.IntegerField()

Field types

Each field in your resource should be an instance of the appropriate Field class. ODIN uses the field class types to
determine a few things:

	The data type (e.g. Integer, String).

	Validation requirements.

Field options

Each field takes a certain set of field-specific arguments (documented in the resource field reference).

There’s also a set of common arguments available to all field types. All are optional. They’re fully explained in the
reference, but here’s a quick summary of the most often-used ones:

	null

	If True, the field is allowed to be null. Default is False.

	default

	The default value for the field. This can be a value or a callable object. If callable it will be called every time
a new object is created.

	choices

	An iterable (e.g., a list or tuple) of 2-tuples to use as choices for this field.

A choices list looks like this:

GENRE_CHOICES = (
 ('sci-fi', 'Science Fiction'),
 ('fantasy', 'Fantasy'),
 ('others', 'Others'),
)

The first element in each tuple is the value that will be stored field or serialised document, the second element is
a display value.

Again, these are just short descriptions of the most common field options.

Verbose field names

Each field type, except for DictAs and ArrayOf, takes an optional first positional argument – a verbose name.
If the verbose name isn’t given, Odin will automatically create it using the field’s attribute name, converting
underscores to spaces.

In this example, the verbose name is “person’s first name”:

first_name = odin.StringField("person's first name")

In this example, the verbose name is “first name”:

first_name = odin.StringField()

DictAs and ArrayOf require the first argument to be a resource class, so use the verbose_name keyword
argument:

publisher = odin.DictAs(Publisher, verbose_name="the publisher")
authors = odin.ArrayOf(Author, verbose_name="list of authors")

Resource level validation

Field validation can be customised at the resource level. This is useful as it allows validation of data using a value
from another field for example ensuring a maximum value is greater than a minimum value, or checking that a password
and a check password matches.

This is achieved using by defining a method called clean_FIELDNAME which accepts a single value argument, Odin will
then use this method during the cleaning process to validate the field. Odin will then use the value that is returned
from the clean method, allowing you to apply any customised formatting. If an issue is found with a value then raise a
odin.exceptions.ValidationError and the error returned will be applied to validation results.

Example:

class Timing(odin.Resource):
 minimum_delay = odin.IntegerField(min_value=0)
 maximum_delay = odin.IntegerField()

 def clean_maximum_delay(self, value):
 if value < self.minimum_delay:
 raise ValidationError('Maximum delay must be greater than the minimum delay value')
 return value

Important

Ensure that a return value is provided, if no return value is specified the Python default is
None and this is the value that Odin will use.

Relationships

To really model more complex documents objects and lists need to be able to be combined, Odin offers ways to define
these structures, DictAs and ArrayOf fields handle these structures.

DictAs relationships

To define a object-as relationship, use odin.DictAs. You use it just like any other Field type by including
it as a class attribute of your resource.

DictAs requires a positional argument: the class to which the resource is related.

For example, if a Book resource has a Publisher – that is, a single Publisher publishes a book:

class Publisher(odin.Resource):
 # ...

class Book(odin.Resource):
 publisher = odin.DictAs(Publisher)
 # ...

This would produce a JSON document of:

{
 "$": "resources.Book",
 "title": "Consider Phlebas",
 "publisher": {
 "$": "resources.Publisher",
 "name": "Macmillan"
 }
}

ArrayOf relationships

To define a array-of relationship, use odin.ArrayOf. You use it just like any other Field type by including it as a
class attribute of your resource.

ArrayOf requires a positional argument: the class to which the resource is related.

For example, if a Book resource has a several Authors – that is, a multiple authors can publish a book:

class Author(odin.Resource):
 # ...

class Book(odin.Resource):
 authors = odin.ArrayOf(Author)
 # ...

This would produce a JSON document of:

{
 "$": "resources.Book",
 "title": "Consider Phlebas",
 "authors": [
 {
 "$": "resources.Author",
 "name": "Iain M. Banks"
 }
]
}

Resource inheritance

Resource inheritance in Odin works almost identically to the way normal class inheritance works in Python. The only
decision you have to make is whether you want the parent resources to be resources in their own right, or if the parents
are just holders of common information that will only be visible through the child resources.

Abstract base classes

Abstract base classes are useful when you want to put some common information into a number of other resources. You
write your base class and put abstract=True in the Meta class. This resource will then not be able to created from a
JSON document. Instead, when it is used as a base class for other resources, its fields will be added to those of the
child class.

An example:

class CommonBook(odin.Resources):
 title = odin.StringField()

 class Meta:
 abstract = True

class PictureBook(CommonBook):
 photographer = odin.StringField()

The PictureBook resource will have two fields: title and photographer. The CommonBook resource cannot be used as a
normal resource, since it is an abstract base class.

	todo

	Add details of how to support multiple object types in a list using Abstract resources

Annotated Resources

A resource is a collection of fields and associated meta data that is used to validate data within the fields.

	The basics:

	
	Each annotated resource is a Python class that subclasses odin.AnnotatedResource.

	Each field attribute of the resource is defined type attributes.

	Additional field options can be provided using odin.Options.

Quick example

This example resource defines a Book, which has a title, genre and num_pages:

import odin

class Book(odin.AnnotatedResource):
 title: str
 genre: str
 num_pages: int
 rrp: float = 24.5

title, genre, num_pages and rrp are fields. Each field is specified as a class attribute, the rrp
field has a default value of 24.5.

The above Book resource would create a JSON object like this:

{
 "$": "resources.Book",
 "title": "Consider Phlebas",
 "genre": "Space Opera",
 "num_pages": 471,
 "rrp": 24.5
}

	Some technical notes:

	
	The $ field is a special field that defines the type of AnnotatedResource.

	The name of the resource, resources.Book, is automatically derived from some resource metadata but can be
overridden.

Fields

The most important part of a resource – and the only required part of a resource – is the list of fields it defines.
Fields are specified by attributes. Be careful not to choose field names that conflict with the resources API like
clean.

Example:

class Author(odin.AnnotatedResource):
 name: str

class Book(odin.AnnotatedResource):
 title: str
 authors: List[Author]
 genre: str
 num_pages: int
 rrp: float = 24.5

Field types

Each field in your annotated resource must include a type annotation that odin uses to determine the appropriate field
type.

Supported Annotations

All basic types of field are supported by Odin, str, bool, int, float, dict, list,
datetime.datetime, datatime.date, datetime.time, uuid.UUID and pathlib.Path. These all map to the
appropriate odin field along with any options.

Odin also includes a number of builtin type aliases for commonly used field types via the odin.types alias
odin.types.Email, odin.types.IPv4, odin.types.IPv6, odin.types.IPv46 and odin.types.Url.

Enum types are supported by simply specifying an enum type.

Composite fields are supported using generic type hints, the List/Sequence and Mapping/Dict type
specifiers will map to the appropriate fields based on the arguments provided.

Finally use of the Optional typing alias is used to set the null field option.

Field options

Options are provided to the appropriate field using the odin.Options class. This will be identified by Odin
with the options passed to the resolved field type.

An example:

class Book(odin.AnnotatedResource):
 title: str = odin.Options(min_length=1)

The first value of the Options class is the default value, the Options object cna be left out if only a default
value needs to be provided.

To defined a completely custom field type use the field_type option, to pass a field instance that will be used for
the field.

Resource inheritance

Resource inheritance in Odin works almost identically to the way normal class inheritance works in Python. The only
decision you have to make is whether you want the parent resources to be resources in their own right, or if the parents
are just holders of common information that will only be visible through the child resources.

Abstract base classes

Abstract base classes are useful when you want to put some common information into a number of other resources. You
write your base class and put abstract=True in the Meta class. This resource will then not be able to created from a
JSON document. Instead, when it is used as a base class for other resources, its fields will be added to those of the
child class.

An example:

class CommonBook(odin.AnnotatedResource, abstract=True):
 title: str

class PictureBook(CommonBook):
 photographer: str

The PictureBook resource will have two fields: title and photographer. The CommonBook resource cannot be used as a
normal resource, since it is an abstract base class.

Resource Meta options

Meta options are flags that can be applied to a resource to affect it’s behaviour or
how it is dealt with via Odin tools.

Give your resource metadata by using an inner class Meta, eg:

class Book(odin.Resource):
 class Meta:
 name_space = "library"
 verbose_name_plural = "Books"

 title = odin.StringField()

Resource metadata is “anything that’s not a field”, module_name and human-readable
plural names (verbose_name and verbose_name_plural). None are required, and adding class
Meta to a resource is completely optional.

Meta Options

	name

	Override the name of a resource. This is the codecs when serialising/de-serialising
as a name to represent the resource. The default name is the name of the class used
to define the resource.

	name_space

	The name space is an optional string value that is used to group a set of common
resources. Typically a namespace should be in the form of dot-atoms eg:
university.library or org.poweredbypenguins. The default is no namespace.

	verbose_name

	A long version of the name for used when displaying a resource or in generated
documentation. The default verbose_name is a name attribute that has been
converted to lower case and spaces put before each upper case character
eg: LibraryBook -> “library book”

	verbose_name_plural

	A pluralised version of the verbose_name. The default is to use the verbose name
and append an ‘s’ character. In the case of many words this does not work correctly
so this attribute allows for the default behaviour to be overridden.

	abstract

	Marks the current resource as an abstract resource. See the section
Abstract base classes for more detail of the abstract attribute. The default
value for abstract is False.

	doc_group

	A grouping for documentation purposes. This is purely optional but is useful for
grouping common elements together. The default value for doc_group is
None.

	type_field

	The field used to identify the object type during serialisation/de-serialisation.
This defaults to the $ character.

	key_field_name

	Used by external libraries like baldr for identifying what field is used as
the key field to uniquely identify a resource instance (a good example would be
an ID field).

	key_field_names

	Similar to the key_field_name but for defining multi-part keys.

	field_name_format

	Provide a function that can be used to format field names. Field names are used
to identify values when a resource serialised/deserialised.

For example to use camelCase names specify the following option:

from odin.utils import snake_to_camel

class MyResource(Resource):
 class Meta:
 field_name_format = snake_to_camel

	field_sorting

	Used to customise how fields are sorted (primarily affects the order fields will
be exported during serialisation) during inheritance. The default behaviour is
to sort fields in the child resource before appending the fields from the parent
resource(s).

Settings this option to True will cause field sorting to happen after all of
the fields have been attached using the default sort method. The default method
sorts the fields by the order they are defined.

Supplying a callable allows for customisation of the field sorting eg sort by
name:

def sort_by_name(fields):
 return sorted(fields, key=lambda f: f.name)

class MyResource(Resource):
 class Meta:
 field_sorting = sort_by_name

	user_data

	Additional data that can be added to metadata. This can be used to provide additional
parameters beyond those supported by odin for a custom application use-case.

For example:

class MyResource(Resource):
 class Meta:
 user_data = {
 "custom": "my-custom-value",
 }

Adapters

Adapters are wrappers around resources that allow for an alternate view of the data contained in a resource or provide
additional functionality that is specific to part of your code base. An adapter can be used just like the plain resource
with most methods within Odin, including codecs.

See Adapter Examples

Validators

Built in validators

These validators are provided with odin.

Traversal

Traversal package provides tools for iterating and navigating a resource tree.

TraversalPath

Todo: In progress…

ResourceTraversalIterator

Iterator for traversing (walking) a resource structure, including traversing composite fields to fully navigate a
resource tree.

This class has hooks that can be used by subclasses to customise the behaviour of the class:

	on_enter - Called after entering a new resource.

	on_exit - Called after exiting a resource.

Utils

Collection of utilities for working with Odin as well as generic data manipulation.

Resources

Name Manipulation

Choice Generation

Iterables

Integration

Integrations of Odin with other libraries/services.

	Integration with Amazon Web Services

	Integration with Django

Integration with Amazon Web Services

Integration with Amazon Web Services [https://aws.amazon.com] is via
odincontrib.aws <https://github.com/python-odin/odincontrib.aws/

Requires boto3.

Odin Contrib AWS includes:

	Integration with DynamoDB. Dynamo versions of fields, resources (Table) and querying

Dynamo DB

Tables can be defined using extended Resources, this provides an interface for table creation, save (put) items, query,
scan and batch operations. Querying is performed either using raw parameters (as used by Boto3) or using a SQLAlchemy
style fluent interface.

Example:

from odincontrib_aws import dynamodb

class Book(dynamodb.Table):
 class Meta:
 namespace = 'library'

 title = dynamodb.StringField()
 isbn = dynamodb.StringField(key=True)
 num_pages = dynamodb.IntegerField()
 genre = dynamodb.StringField(choices=(
 ('sci-fi', 'Science Fiction'),
 ('fantasy', 'Fantasy'),
 ('biography', 'Biography'),
 ('others', 'Others'),
 ('computers-and-tech', 'Computers & technology'),
))

session = dynamodb.Session()

Save a new book into a Dynamo DB table
book = Book(
 title="The Hitchhiker's Guide to the Galaxy",
 isbn="0-345-39180-2",
 num_pages=224,
 genre='sci-fi',
)
session.put_item(book)

Scan through all books in the table (this method is transparently paged)
for book in session.scan(Book):
 print(book.title)

SQS

This is development in progress to use Odin for defining and verifying SQS messages.

Integration with Django

Mapping Django models to resources

To utilise a Django database model in a Mapping a
FieldResolver is required to identify fields available on the model.

The following is an example of a resolver for Django models.

from odin import registration
from odin.utils import getmeta
from odin.mapping import FieldResolverBase

class ModelFieldResolver(FieldResolverBase):
 """
 Field resolver for Django Models
 """

 def get_field_dict(self):
 meta = getmeta(self.obj)
 return {f.attname: f for f in meta.fields}

registration.register_field_resolver(ModelFieldResolver, models.Model)

Odin Examples

Examples of odin usage to get you started.

	Adapter Examples
	Filtering out fields

	Added additional functionality to a resource

	CSV Codec Examples
	Typical Usage

	Handling errors

Adapter Examples

Filtering out fields

There are many times where certain fields need to be filtered from a resource before the resource is serialised (either
to file or into an HTTP response). This could be to remove any sensitive information, or internal debug fields that
should not be returned to an API. The odin.adapters.ResourceAdapter class makes this trivial.

Which fields should be filtered can be defined in one of two ways:

At instantiation to allowing for dynamic filtering
my_filtered_resource = odin.ResourceAdapter(my_resource, exclude=('password',))

Of predefined if this adapter will be used multiple times (not an adapter is not tied to any particular resource
type so a single adapter could be used to filter the password field from any resource)
class PasswordFilter(odin.ResourceAdapter):
 exclude = ['password',]

my_filtered_resource = PasswordFilter(my_resource)

Added additional functionality to a resource

I have a resource that define a set of simulation results. I want to be able to render the results of this
simulation into several different formats eg an HTML table, a text file, a chart.

One approach would be to add to a method to the resource for each of the formats I wich to render like to_html or to_text, however this has a number of drawbacks:

	The resource is not more complex with an additional method for each of the target formats

	Rendering code is now mixed in with your data structure definition

	In a larger team there is more chances of multiple people working on the same file making merges more complex

	If I define another resource for a different set of results, sharing common code is harder

	The resource has a different interface for each method

The odin.adapters.ResourceAdapter class simplifies this.

By defining a rendering adapter for each of the different targets, the rendering code for each of these targets is encapsulated in a single class:

class HtmlRenderingAdapter(odin.ResourceAdapter):
 def render(self):
 ...

class TextRenderingAdapter(odin.ResourceAdapter):
 def render(self):
 ...

The benefits of this approach:

	All features required for each render adapter are encapsulated

	Each of these adapters can exist in their own file

	Both adapters include the same render interface they can be passed to code that understands that interface

	Both classes can both inherit off a common base class that provides common code that is related to each rendering operation.

CSV Codec Examples

The CSV codec is different to other codecs in that it produces an iterable of
odin.Resource objects rather than a single structure.

Typical Usage

When using the odin.codecs.csv_codec my recommendation is to define
your CSV file format using a CSV csv.Dialect [https://docs.python.org/3/library/csv.html#csv.Dialect] and a sub-class of the
odin.codecs.csv_codec.Reader to configure how files are handled.

A simple example of a customised csv.Dialect [https://docs.python.org/3/library/csv.html#csv.Dialect] and
odin.codecs.csv_codec.Reader:

import csv

from odin.codecs import csv_codec

class MyFileDialect(csv.Dialect):
 """
 Custom CSV dialect
 """
 delimiter = '\t' # Tab delimited
 quotechar = '"' # Double quotes for quoting
 lineterminator = '\n' # UNIX style line termination

class MyFileReader(csv_codec.Reader):
 """
 Custom file reader
 """
 # Specify our custom dialect
 csv_dialect = MyFileDialect
 # Header case is not important
 ignore_header_case = True
 # Treat empty values as `None`
 default_empty_value = None

This can then be used with:

To read a file
with open("my_file.csv") as f:
 for r in MyFileReader(f, MyResource):
 pass

To write a file
with open("my_file.csv", "w") as f:
 csv_codec.dump(f, my_resources, dialect=MyFileDialect)

Handling errors

As resources are generated as each CSV row is read any validation errors raised
also need to be handled. The default behavior is for a validation error to be
raised when a invalid row is encountered effectively stopping processing.
However, it may be valid to skip bad rows or, a report of bad rows can be
generated and processing continued.

There are two approaches that can be used:

	Provide an error_callback value to the odin.codecs.csv_codec.Reader

	
	Sub-class the odin.codecs.csv_codec.Reader class and implement a

	custom handle_validation_error method to process errors.

Note

Providing an error_callback will overwrite any custom
handle_validation_error method.

The error_callback option is the simplest:

def error_callback(validation_error, idx):
 """
 Handle errors reading rows from CSV file.

 :param validation_error: The validation error exception
 :param idx: The row index the error occurred on.
 :returns: ``None`` or ``False`` to explicitly case the exception to
 be raised.

 """
 print("Error in row {}: {}".format(idx, validation_error), file=sys.stderr)

with open("my_file.csv") as f:
 for r in MyFileReader(f, MyResource, error_callback=error_callback):
 ...

The sub-class method is more involved upfront but does allow for more
customisation:

class MyReader(csv_codec.Reader):
 """
 Custom file reader that reports errors to a file.
 """
 def __init__(self, f, error_file, *args, **kwargs):
 super().__init__(self, *args, **kwargs)

 self.error_file = error_file

 def handle_validation_error(self, validation_error, idx):
 self.error_file.write("{}\t{}\n".format(idx, validation_error))

with open("my_file.csv") as f_in, open("my_file.error.csv", "w") as f_err:
 for r in MyReader(f_in, f_err, MyResource):
 ...

The second option allows for a lot of customisation and reuses. For example the
error report could itself output a CSV file.

Change History

2.3

	Add meta option to specify how to format field names for serialisation. For example
support being able to specify camelCase.

	Updates to documentation
- Add field_name_format meta option to docs
- Document odin.utils

2.2

	Fix a bug where annotated resource fields failed to get resolved.

	Fix issues where functools.cached_property does not work on annotated resources as __set_name__
was not being called.

	Updates to documentation
- Introduce integration example for mapping Django models
- Flesh out mapping documentation
- Fix missing link to dict_codec reference.

2.1

Annotated Resources

	Final fields are now mapped to ConstantField and require a default value.

	Fix issue where the Toml codec did not recognise annotated resources in dump and dumps functions.

Breaking changes

	Virtual fields ConstantField and CalculatedField now require keyword arguments for options.

2.0

	Annotated Resources!
- Use annotations to define your resources including Aliases for Email, URL’s and UUID’s

	Drop support for Python <3.8, officially tested on Python 3.8+

	Removed a number of dependencies that where only required for Python <3.8 eg
(enum, six etc)

	Removed deprecated features:
- odin.csv_codec.ResourceReader
- odin.serializers.DatetimeEcmaFormat

	Improvements to typing and utilising of modern Python features

	Fix bug in toml_codec that prevented the use of the include_type_field option.

	Invalid choices now generate a ValueError exception

	New fields for builtin Python types
- odin.PathField
- odin.RegexField

	Use builtin datatime.timezone.utc instead of custom UTC instance

1.8.1

	Change composite field to pass the resource the field is defined with rather
than the name of the field, this allows namespace and typing to work correctly.

1.8.0

	Allow types to be resolved by assuming a types names space (simplifies
specification of types where the full name space can be assumed)

	Inherit a custom type_field (this could cause unexpected side effects,
although unlikely as this is a required change)

1.7.3

	Fix bug where __classcell__ was not passed into super_new during metaclass
construction. This causes a RuntimeError with Python 3.8+ if the metaclass is
subclassed.

1.7.2

	Fix an edge case bug where validators are not executed against empty list/dict
fields.

	Ensure that all validate and run_validators are executed on all entries in a
typed list field

1.7.1

	Tweak to generation of sphinx choices so TypedLists use choices from type.

	Fix issue in Sphinx plugin where choices_doc_text was not used to format
choice values.

	Add TypedDictField to docs

1.7.0

	Migrate from collections.Iterable to typing.Iterable to remove a warning

	Add user defined metadata to Resource.Meta object

	Add a reserved word guard, starting with fields (using fields causes
clean_fields to go into a infinite recursion loop)

1.6.2

	Migrate string formatting from % to “”.format

	Apply black code style on all code

	Improve some type hints

	Add a Text block to XML Codec

1.6.1

	Fix poetry config error that restricted Python versions > 3!

1.6.0

	Remove encoding option for msgpack (this has been removed from msgpack itself)

	Correct some typing inconsistencies (EnumField was the most obvious fix)

	Package is now managed by poetry

	Migrate to GitHub Actions

	Static analysis and Coverage reporting now handled by SonarCloud.

	Toml Codec

1.5.2

	Relax overly tight dependency specification. Removed pyup.io it is not suitable
for packages.

1.5

	Improvements to sphinx autodoc generation

	Improvements to enum support

1.0b2

	Added a redesigned CSV codec Reader to address issues with handling row-by-row
processing and handling of row-level errors.

	Removed filter-query (moved to feature branch)

0.10b9

	Added support for MultiPartField field type. A virtual field that allows for
the easy generation of key values composed of several other fields.

	Documentation updates and some initial type hints added (using :type… style)

	Allow a virtual field to be identified as a key

	Introduce a common base class for ALL field types, this allows them to be identified
separately via hash (for sorting and keys)

	Tweaked the new string.empty option so by default it behaves in the same way as
it was previously defined (eg null assumes empty)

0.10b

	Possible breaking change with date and time serializers, they no longer apply
a timezone as this is expected to be managed by date and time fields.

	Added getmeta tool for getting meta data.

	Changes to Resource/Meta options to allow for them to be overridden.

	Fixes regarding ResourceBase/Resource changes

0.9

	Fixed bug preparing naive date and time values.

0.9a0

	Support for multipart keys.

	Support for naive dates and times.

	Boolean fields now accept y/n as truthy

	Change of Resource iterable base class

0.8.2

	Migrated all tests to py.test

	Support for Python 2.6 for _most_ features (some contrib features are not supported
see docs for detail)

0.8.1

	Bug fix for compatibility.deprecated decorator. Was breaking baldr when handling
classes.

	Some documentation fixes.

0.8

	Added key_fields to resource meta options. This allows definition of which field(s)
are used to uniquely identify the resource.

	Added support to TraversalPath (and ResourceTraversalIterator) for using key_fields,
both generating and traversing a Resource tree.

	CodecDecodeError and CodecEncodeError now inherit off CodecError.

	TraversalPath now raises multiple error types InvalidPathError, NoMatchError,
and MultipleMatchesError

	Some additional tweaks to inspect tool, as of now is still only available to
Python 3.

	Additional test cases.

0.7

	Python 3.5 added for Travis CI test runner

	Added empty flag to ListOf and DictOf files to validate if fields is allowed to
be empty

	Added key_choices to DictOf field to allow allow keys to be validated

	Added TypedDictField this is a analog of the TypedListField but for dict objects

	Project is now owned by the python-odin group

	Initial work on combined string serialisation framework. This is to unify text
serialisation support between the various codecs so additional serialises only
need to be registered in a central location.

	Added DictCodec, this is codec for converting between a dict structure and resource
structure. As Resource.to_dict is explicitly designed to not act in a recursively
this codec fills in a gap where a developer my require a nested dict to be generated.

	Initial implementation of resource filtering. Filtering allows for a filter expression
to be defined and used to filter a list of resources or ensure a particular resource
matches the expression. Expressions are easy to define and read and allow for
filtering against sub-resources etc.

	Added caching to the results of mapping operations. Previously iterating through
a mapping multiple times caused the mapping to be re-run. This has been made the
default behaviour, if the previous behaviour is desired the MappingResult class
can be provided to Mapping.apply instead of CachingMappingResult.

	ResourceAdapter.apply_to now caches Meta object of matching resources types, previously
a new meta object was created for each resource.

	ResourceAdapterOptions.virtual_fields is now filtered using include/exclude options.

	More tests, more docs

	Various bug fixes.

0.6

Odin

	Changed the generated type name for mapping factory to ensure a more unique name.

	Pass through excluded_fields when generating types in mapping factory.

	Added ignored fields parameter to be provided to Resource.convert_to method.

	Added included fields parameter to the Mapping.update method

	Updated the ResourceAdapter interface to match that of a normal Resource, can
now be used in place of a Resource with any codec.

	Added ResourceAdapter.apply_to method that simplifies applying a resource adapter
to a list of Resources.

	Updated create_resource_from_dict to accept a list and return a list of resources.

	Fixed bug in auto-mapping generation of MapListOf fields to set the to_list flag
correctly

	Added forward_mapping_factory a shortcut version of mapping_factory when only
a forward mapping is required.

	Added the assign (similar to the define shortcut) shortcut for defining an assignment
mapping

	Fixed a bug where performing a full clean on a Resource that was created via a
mapping would fail when a MappingResult object was encountered.

	Added ResourceOptions.element_field_map for use in XML codecs

	Added container flag and ResourceOptions.container_fields for XML style codecs

	Large number of documentation updates

	Fixed bug where Mapping.loop_idx was not being updated correctly, after 2 levels
of nesting the wrong index was being updated.

Sphinx Integration

	Add max length into resource documentation

	Added description to validators that can be used in sphinx documentation

Index

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/img/Mapping.png
Resource A

Mapping AtoX

lf __________

Resource X

- >

i

Resource B

Resource C

Mapping BtoY

Mapping CtoZ

Resource Y

Resource Z

_static/img/baldr.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/img/odin.png
()]

nav.xhtml

 Table of Contents

 		
 Contents

 		
 ODIN documentation

 		
 First Steps

 		
 Working with resources

 		
 Extras

 		
 Integration

 		
 Project Links

 		
 Indices and tables

 		
 Getting started

 		
 Creating resources

 		
 Design your resources

 		
 Working with resources

 		
 Annotated resources

 		
 Defining annotated resources

 		
 Working with resources

 		
 Abstract Resources

 		
 Loading and saving data

 		
 JSON data

 		
 Mapping between resources

 		
 Defining a mapping

 		
 Converting between resources

 		
 Polymorphism and abstract resources

 		
 API Reference

 		
 Codecs

 		
 CSV Codec

 		
 Dict Codec

 		
 JSON Codec

 		
 MessagePack Codec

 		
 TOML Codec

 		
 YAML Codec

 		
 XML Codec

 		
 contrib packages

 		
 Generating resource documentation

 		
 Geographic Values

 		
 Currency and Money Values

 		
 Physical Quantities with Pint

 		
 Sphinx Extension

 		
 Exceptions

 		
 Mapping

 		
 Mapping Classes

 		
 Mapping Helpers

 		
 Resources

 		
 Field reference

 		
 Resources Instances

 		
 Annotated Resources

 		
 Resource Meta options

 		
 Adapters

 		
 Validators

 		
 Built in validators

 		
 Traversal

 		
 TraversalPath

 		
 ResourceTraversalIterator

 		
 Utils

 		
 Resources

 		
 Name Manipulation

 		
 Choice Generation

 		
 Iterables

 		
 Integration

 		
 Integration with Amazon Web Services

 		
 Dynamo DB

 		
 SQS

 		
 Integration with Django

 		
 Mapping Django models to resources

 		
 Odin Examples

 		
 Adapter Examples

 		
 Filtering out fields

 		
 Added additional functionality to a resource

 		
 CSV Codec Examples

 		
 Typical Usage

 		
 Handling errors

 		
 Change History

 		
 2.3

 		
 2.2

 		
 2.1

 		
 Annotated Resources

 		
 Breaking changes

 		
 2.0

 		
 1.8.1

 		
 1.8.0

 		
 1.7.3

 		
 1.7.2

 		
 1.7.1

 		
 1.7.0

 		
 1.6.2

 		
 1.6.1

 		
 1.6.0

 		
 1.5.2

 		
 1.5

 		
 1.0b2

 		
 0.10b9

 		
 0.10b

 		
 0.9

 		
 0.9a0

 		
 0.8.2

 		
 0.8.1

 		
 0.8

 		
 0.7

 		
 0.6

 		
 Odin

 		
 Sphinx Integration

_static/ajax-loader.gif

